Dynamic correlations at different time-scales with empirical mode decomposition
نویسندگان
چکیده
منابع مشابه
Dynamic correlations at different time-scales with Empirical Mode Decomposition
The Empirical Mode Decomposition (EMD) provides a tool to characterize time series in terms of its implicit components oscillating at different time-scales. We apply this decomposition to intraday time series of the following three financial indices: the S&P 500 (USA), the IPC (Mexico) and the VIX (volatility index USA), obtaining time-varying multidimensional cross-correlations at different ti...
متن کاملEmpirical mode decomposition based time-frequency attributes
This paper describes a new technique, called the empirical mode decomposition (EMD), that allows the decomposition of one-dimensional signals into intrinsic oscillatory modes. The components, called intrinsic mode functions (IMFs), allow the calculation of a meaningful multicomponent instantaneous frequency. Applied to a seismic trace, the EMD allows us to study the di erent intrinsic oscillato...
متن کاملEmpirical mode decomposition with missing values
This paper considers an improvement of empirical mode decomposition (EMD) in the presence of missing data. EMD has been widely used to decompose nonlinear and nonstationary signals into some components according to intrinsic frequency called intrinsic mode functions. However, the conventional EMD may not be efficient when missing values are present. This paper proposes a modified EMD procedure ...
متن کاملPerformance of AERMOD at different time scales
As high-density monitoring networks observing pollutant concentrations are costly to establish and maintain, researchers often employ various models to estimate concentrations of air pollutants. The AMS/EPA Regulatory Model (AERMOD) is a fairly recent and promising model for estimating concentrations of air pollutants, but the effectiveness of this model at different time scales remains to be v...
متن کاملEmpirical mode decomposition for seismic time-frequency analysis
Time-frequency analysis plays a significant role in seismic data processing and interpretation. Complete ensemble empirical mode decomposition decomposes a seismic signal into a sum of oscillatory components, with guaranteed positive and smoothly varying instantaneous frequencies. Analysis on synthetic and real data demonstrates that this method promises higher spectral-spatial resolution than ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physica A: Statistical Mechanics and its Applications
سال: 2018
ISSN: 0378-4371
DOI: 10.1016/j.physa.2018.02.108